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Percolation thresholds and universal formulas

S. C. van der Marck
SIEP Research and Technical Services, P.O. Box 60, 2280 AB Rijswijk, The Netherlands

~Received 16 October 1996!

A calculation of percolation thresholds of 11 two-dimensional and 18 three-dimensional lattices is
presented. Among the three-dimensional ones are a random lattice and its dual, plus a number of aniso-
tropic regular lattices. The results are used to test universal formulas that relate the percolation thresholds of
lattices to their dimension and coordination number. The evidence suggests that dimension and coordination
number arenot sufficient to predict percolation thresholds.@S1063-651X~97!13002-1#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
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I. INTRODUCTION

The idea of percolation processes was introduced in 19
to describe a fluid which spreads randomly through a por
medium @1#. Since then, percolation problems have be
studied extensively, and a variety of applications has b
reported~see, e.g., Ref.@2,3#!. Most of the attention has bee
given to percolation on regular lattices, because it is m
easier to compute quantities for these lattices. Neverthe
an exact calculation of the percolation threshold has
mained elusive for most lattices.

This has prompted the search for empirical formul
which express the percolation thresholdpc of a lattice in
terms of its more simple properties. The formulas that h
been proposed all use the dimensiond and the coordination
numberq of the lattice. For example Sahimiet al. proposed
the relationpc,s5d/@(d21)(q21)# for site percolation@4#.
Several other relations, which are applicable for differe
classes of lattices, have been proposed. Galam and Ma
who presented a brief review of the progress in this ar
recently proposed a single formula that is applicable to
lattices@5#:

pc5p0@~d21!~q21!#2adb. ~1!

The parametersa, b, andp0 are determined by fits to know
values for a number of lattices. For site percolation thre
olds one always hasb50, whereas for bond percolatio
thresholdsb5a.

Galam and Mauger observed that there are only
classes of lattices~for d,7). The first class consists of a
two-dimensional lattices except the kagome´ lattice, and has
$p050.8889;a50.3601% for site percolation and
$p050.6558;a50.6897% for bond percolation. The rest o
the lattices all have thresholds which are described
$p051.2868;a50.6160% for site percolation and
$p050.7541;a50.9346% for bond percolation. Indeed, th
results of Eq.~1! for all lattices in Ref.@5# are very good.

However, although Galam and Mauger considered m
lattices, there are quite a few interesting ones which are
included in their study. This enables one to test the predic
power of their formula. In Ref.@6# the percolation threshold
of a ‘‘stacked triangular’’ lattice were calculated. As
turned out, this lattice has the same dimension and coord
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tion number as the body centered cubic lattice, but marke
different percolation thresholds.

This difference could be caused by the anisotropy in t
stacked triangular lattice. Since Galam and Mauger did
consider anisotropic lattices, this difference is not in cont
diction with their result. Moreover, if one introduces an e
fective coordination numberqe57.65, as was done in Ref
@7#, both the site and the bond percolation threshold are
scribed by Eq.~1!. In other words, if one calculatesqe using
Eq. ~1! with a known value for the site percolation thresho
one can predict the bond percolation threshold, or the o
way around.

The more fundamental question remains theref
whether the two parametersd andq are sufficient to predict
percolation thresholds even for isotropic lattices. To addr
this issue I present here a calculation of percolation thre
olds in many different lattices, both isotropic and anis
tropic. The results lead to the conclusion thatd andq arenot
sufficient to predict percolation thresholds.

II. METHOD AND RESULTS

A conventional way to calculate percolation thresholds
described by Stauffer and Aharony@2#. This method requires
a three-dimensional array~in Fortran ARRAY~I,J,K!! for the
simple cubic lattice, for instance. All the so-called ‘‘Brava
lattices’’ @8# can be coded using such an array. For the n
Bravais lattices, which I will call ‘‘lattices with a basis’
here, the coding is more complicated. In general, the latti
with a basis have received less attention as a result. As
example of a lattice with a basis I have described the dua
the body-centered-cubic~bcc! lattice in Table I and Fig. 1 as
a lattice with a six-point basis.

One could describe a lattice with a basis in computer c
as an array with an additional dimension, i.e.,ARRAY~B,I,J,K!,
whereB loops over the basis points. This does not solve
the associated problems, however, because a
ARRAY~1,I,J,K! is not connected in the same way as, e.
ARRAY~2,I,J,K!. An alternative way to characterize the lattic
is by making an explicit list of bonds that connect the sit
By numbering the sites from 1 toNs , one can list for each
bond the two sites it connects. Although this is somew
elaborate for regular lattices, it has the advantage of m
taining full flexibility, allowing one to handle any desire
topology. One can divide the calculation in two parts. Fi
1514 © 1997 The American Physical Society
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TABLE I. The description of the dual of the body-centered-cubic lattice as a lattice with a six-point b
Each of the points in the first row is connected to the four points listed in its column~i.e., the coordination
number is 4!.

1, x 2, x 3, x 4, x 5, x 6, x

3, x 4, x 1, x 2, x 3, x 4, x
6, x1(21,0,0) 5,x1(0,21,0) 4,x 3, x 6, x 5, x
4, x1(21,1,21) 3, x1(0,0,21) 5, x 6, x 1, x1(1,0,1) 2,x1(1,0,1)
5, x1(21,0,21) 6, x1(21,0,21) 2, x1(0,0,1) 1,x1(1,21,1) 2,x1(0,1,0) 1,x1(1,0,0)
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one can write a small program that generates lists of bo
for a specific lattice. Then one can use a generic program
calculates the percolation threshold for the specified latt
This program typically contains separate arrays for the s
and for the bonds. The array of bonds would list the site
connects~e.g., BONDS~2,NBONDS!!, while the array of sites
would list the bonds that are connected to it~SITES~QMAX,N-
SITES!, with QMAX the maximum coordination number!. To
determine the percolation threshold for such a system, a c
ter algorithm is needed. For this purpose the cluster a
rithm by Hoshen and Kopelman@9# can be cast into a suit
able form.

For each of the lattices listed in Table II I have calculat
percolation thresholdspc(L) for various lattice sizesL. In
two dimensions the largest lattice size was 5123512 ~i.e.,
L5512), in three dimensions 64364364. The results
quoted in Table II are fits ofpc to the scaling relation

upc~L !2pcu;L21/n, ~2!

where the critical exponentn was kept fixed at 4/3 in two
dimensions and at 0.88 in three dimensions.

All the two-dimensional lattices can be ‘‘stacked’’ t
form three-dimensional lattices. For instance one can s
the layers of square lattices directly on top of one anothe
obtain the simple cubic lattice. Analogously one can sta
the triangular lattice to form what is sometimes called
simple hexagonal lattice@8#. By stacking various two-
dimensional lattices one obtains several anisotropic latti
A calculation of percolation thresholds for these lattic
should give some information on the validity of univers

FIG. 1. The definition of the basis points for the dual of t
body-centered-cubic lattice. The dashed arrows markedx, y, and
z indicate the three directions in which this basis is repeated
build the lattice.
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formulas for anisotropic lattices. Therefore these lattic
have been included in Table II.

Table II also lists the results for an irregular lattic
~‘‘Finney’’ ! and its dual. This lattice is defined on the bas
of a real bead pack, which was constructed and measure
Finney @10#. One can define the beads of the packing as
sites of a lattice. The bonds of the network are given on
one defines the neighbors of each site. I have used the
launay triangulation for this purpose, which is equivalent
e.g., Bernal’s definition of ‘‘geometrical neighbors’’@11#.
The dual of the lattice thus obtained is given by the Voron
tessellation@12#. I have taken subsets of the Finney pack
increasing size, calculated the percolation thresholds for e
size, and fitted the results to Eq.~2!.

Several checks have been performed to confirm the va
ity of the computer programs and their numerical resu
First of all, a number of percolation thresholds in two dime
sions are known exactly. For ‘‘self-matching’’ lattices@13#,
the site percolation threshold is12. Examples are the triangu
lar lattice and the octagonal lattice~see Fig. 2!. As a conse-
quence the bond percolation threshold of the square la
has been shown to be12 too. The bond percolation threshol
of the triangular lattice is given by
pn52sin(p/18)50.347296 . . . , and for itsdual lattice, the
honeycomb lattice, it is therefore 12pn . Moreover, it was
shown that the site percolation threshold of the Kagome´ lat-
tice is equal to the bond percolation threshold of the hon
comb lattice, i.e., 12pn . All these results have been re
ported by Sykes and Essam@13#. Wierman@14# proved that
the bond percolation threshold of the bowtie lattice is giv
by p

q

50.404518 . . . (p
q

actually is the root of
12p26p216p32p550). The bond percolation
threshold of the dual lattice of the bowtie lattice is 12p

q

.
I have checked that the numerical results for these thre

olds coincided with the exact results, within estimated er
margins of 0.0005 at maximum. Furthermore, the statem
that in two dimensions the bond percolation thresholds o
lattice and its dual should add to unity~for most lattices
@13#!, can be used to test some of the results in Table II.

Some of the lattices in Table II are Bravais lattices, v
the simple cubic, the face-centered-cubic~fcc!, the bcc, and
the stacked triangular lattice. I have verified with a separ
computer program, that, when coded asARRAY~I,J,K!, the re-
sults for the percolation thresholds are the same, within
estimated error margins. The largest system size used for
type of calculation was higher,L5128.

Finally I have checked the results for the dual of the b
lattice. This could be done by using the Voronoi tessellat
to generate an explicit dual lattice, based on the position
to
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TABLE II. Site (pc,s) and bond (pc,b) percolation thresholds for various lattices and their dual lattices. The average coordination
networks is listed underq̄. In the references given in the column titled Ref., pictures of the lattices are given. In the top half of the ta
two-dimensional lattices are listed, in the bottom half the three-dimensional ones. The thresholds marked with* are exact~see text!. The
lattices marked withA were included in the Galam and Mauger study@5,7#. The result for the site percolation threshold of the square lat
is taken from Ref.@2#. The abbreviation ‘‘hcp’’ stands for hexagonal close packed. Between brackets are error estimates concerning
digit.

Name lattice q̄ Ref. pc,s pc,b Name dual q̄ Ref. pc,s pc,b

A kagomé 4 @3# 0.6527 . . . * 0.5243~4! dice 4 0.5848~2! 0.4755~4!
A square 4 0.592746 0.5* A square 4 0.592746 0.5*

5 0.5502~8! 0.4196~6! pentagonal 313 @15# 0.6471~6! 0.5800~6!

bowtie 5 @14# 0.5475~8! 0.4045 . . . * 313 @14# 0.6653~6! 0.5954 . . . *
A triangular 6 @2# 0.5* 0.3472 . . . * A honeycomb 3 @3# 0.6971~4! 0.6527 . . . *
octagonal 6 Fig. 2 0.5* 0.3237~6! 3 Fig. 2 0.7297~4! 0.6771~6!

kagoméstack 6 0.3346~4! 0.2563~2! dice stack 6 0.2998~4! 0.2378~4!
A ~simple! cubic 6 0.3114~4! 0.2487~2! A ~simple! cubic 6 0.3114~4! 0.2487~2!

7 0.2872~4! 0.2142~4! pentagonal stack 513 0.3394~4! 0.2793~4!

bowtie stack 7 0.2822~6! 0.2092~4! 513 0.3480~4! 0.2853~4!

triangular stack 8 @8# 0.2623~2! 0.1859~2! honeycomb stack 5 0.3701~2! 0.3093~2!

octagonal stack 8 0.2524~6! 0.1752~2! 5 0.3840~4! 0.3168~4!
A bcc 8 @8# 0.2458~2! 0.1802~2! 4 Fig. 1 0.4560~6! 0.4031~6!

A diamond 4 @8# 0.4286~4! 0.3888~2!
A fcc 12 @8# 0.1994~2! 0.1200~2!
A hcp 12 @8# 0.1990~2! 0.1199~2!

Finney pack@10# 14.3 0.1623~8! 0.0925~9! 4 0.4495~9! 0.3987~8!
b
on
A
su

o
la
bu
r-
ic
s

is

t
or

e’’

la-

co-

of

is
e
nd
he

lat-

ice

the
71)

ger
ll
az-
on
on
ago-
ave
a number of bcc lattice sites. Since the coordination num
of the dual of the bcc lattice is four, the Voronoi tessellati
is nondegenerate in this case, and therefore easy to use.
in this case several lattice sizes were used and the re
were fitted to Eq.~2!.

III. DISCUSSION

There are several observations one can make when
looks carefully at Table II. For instance, there are many
tices with equal dimension and coordination number,
with different percolation thresholds. In particular it is inte
esting to compare the triangular and octagonal lattices, wh
both haved52 andq56. Their site percolation threshold i

equal (12 , exact result!, but their bond percolation threshold

FIG. 2. The octagonal lattice~solid lines! and its dual~dashed
lines!.
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different: 0.347 296 . . . vs0.323760.0006. This means tha
d andq are not enough to predict percolation thresholds. F
this case it is not even possible to define an ‘‘effectiv
coordination numberqe , as Galam and Mauger@7# suggest,
that will allow such a prediction. Based on the site perco
tion thresholds one would infer thatqe is equal for these two
lattices. This would lead one to predict that the bond per
lation thresholds are equal too, which is not the case.

The comparison of the diamond lattice with the dual
the bcc lattice is worth mentioning. Both lattices haved53
andq54, and are isotropic. That the dual of the bcc lattice
isotropic is not apparent from Fig. 1, but follows from th
fact that the bcc lattice itself is isotropic. Both the site a
bond percolation thresholds are distinctly different for t
two lattices: 0.428660.0004 vs 0.456060.0006~sites! and
0.388860.0002 vs 0.403160.0006~bonds! for the diamond
and bcc-dual lattice, respectively. So even for isotropic
tices one needs more thand and q to predict percolation
thresholds.

In general one can conclude from the table that if a latt
has a higher coordination numberq, its percolation thresh-
olds are lower. There is only one exception to this rule:
site percolation threshold of the pentagonal lattice (0.64
is lower than that of the Kagome´ lattice (0.6527 . . . ), al-
though its average coordination number is lower (31

3 vs 4).
This does not contradict the results of Galam and Mau
@5#, because the Kagome´ lattice is in a different class than a
the other two-dimensional lattices. Nevertheless, it is am
ing in its own right that the ordering of the bond percolati
thresholds is different from that of the site percolati
thresholds. This occurs in the case of the bcc and the oct
nal stacked lattice too. However, in this case the lattices h
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equald andq, so it might be considered less striking her
The results for the irregular lattices are reasonably w

described by Eq.~1!. The site percolation threshold for th
Finney pack is 0.162360.0008 vs a prediction of 0.1705
while the bond percolation threshold is 0.092560.0008 vs a
prediction of 0.0981. Since the average coordination num
of this lattice is 14.3, higher than any of the regular lattic
this is an extra test of Eq.~1!. The results for the dual of the
Finney pack, coordination number 4, lie between those of
diamond lattice and the dual of the bcc lattice. The bo
percolation threshold (0.398760.0008) is close to the pre
dicted value (0.3945), but the site percolation thresh
shows a deviation: 0.449560.0009 vs 0.4267.

Finally, if d andq are not enough to predict percolatio
thresholds, are there alternatives? For the anisotropic latt
Ph
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e
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one could try to quantify the anisotropy and add this quan
to the fit parameters. The results of Table II can be used to
this. For the isotropic lattices one could distinguish betwe
lattices with only one coordination number, and lattices w
a spread~e.g., the octagonal lattice has sites with four co
nected bonds, and sites with eight!. However, these quanti
ties do not separate the diamond lattice from the dual of
bcc lattice~or even from the dual of the Finney pack!, so one
will have to become more sophisticated.

In summary, I calculated site and bond percolation thre
olds of many two- and three-dimensional lattices. The res
indicate that one cannot predict percolation thresholds on
basis of dimension and coordination number only, not ev
for isotropic lattices.
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