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Percolation thresholds and universal formulas
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A calculation of percolation thresholds of 11 two-dimensional and 18 three-dimensional lattices is
presented. Among the three-dimensional ones are a random lattice and its dual, plus a number of aniso-
tropic regular lattices. The results are used to test universal formulas that relate the percolation thresholds of
lattices to their dimension and coordination number. The evidence suggests that dimension and coordination
number arenot sufficient to predict percolation threshold§1063-651X97)13002-1

PACS numbefs): 64.60.Ak, 64.60.Cn, 64.70.Pf

[. INTRODUCTION tion number as the body centered cubic lattice, but markedly
different percolation thresholds.

The idea of percolation processes was introduced in 1957, This difference could be caused by the anisotropy in this
to describe a fluid which spreads randomly through a poroustacked triangular lattice. Since Galam and Mauger did not
medium [1]. Since then, percolation problems have beenconsider anisotropic lattices, this difference is not in contra-
studied extensively, and a variety of applications has beediction with their result. Moreover, if one introduces an ef-
reported(see, e.g., Ref2,3]). Most of the attention has been fective coordination numbey,=7.65, as was done in Ref.
given to percolation on regular lattices, because it is muclh7], both the site and the bond percolation threshold are de-
easier to compute quantities for these lattices. Neverthelessgribed by Eq(1). In other words, if one calculateg, using
an exact calculation of the percolation threshold has reEq. (1) with a known value for the site percolation threshold,

mained elusive for most lattices. one can predict the bond percolation threshold, or the other
This has prompted the search for empirical formulasway around.
which express the percolation threshgld of a lattice in The more fundamental question remains therefore

terms of its more simple properties. The formulas that havevhether the two parametedsandq are sufficient to predict
been proposed all use the dimensiband the coordination percolation thresholds even for isotropic lattices. To address
numberq of the lattice. For example Sahirat al. proposed this issue | present here a calculation of percolation thresh-
the relationp. s=d/[(d—1)(q—1)] for site percolatiof4]. ~ olds in many different lattices, both isotropic and aniso-
Several other relations, which are applicable for differenttropic. The results lead to the conclusion tdaindq arenot
classes of lattices, have been proposed. Galam and Maugeufficient to predict percolation thresholds.
who presented a brief review of the progress in this area,
reqently proposed a single formula that is applicable to all Il. METHOD AND RESULTS
lattices[5]:
A conventional way to calculate percolation thresholds is
_ _ _1y71-adb described by Stauffer and Aharof®]. This method requires
Pe=pol(d=1)(q=1)] "d" @ a three-dimensional arragin Fortran ARRAY(1,J,K)) for the
simple cubic lattice, for instance. All the so-called “Bravais
The parametera, b, andp, are determined by fits to known |lattices” [8] can be coded using such an array. For the non-
values for a number of lattices. For site percolation threshBravais lattices, which | will call “lattices with a basis”
olds one always ha®=0, whereas for bond percolation here, the coding is more complicated. In general, the lattices
thresholdsb=a. with a basis have received less attention as a result. As an
Galam and Mauger observed that there are only twaxample of a lattice with a basis | have described the dual of
classes of lattice¢for d<<7). The first class consists of all the body-centered-cubibco lattice in Table | and Fig. 1 as
two-dimensional lattices except the kagotattice, and has a lattice with a six-point basis.
{pp=0.8889;a=0.360} for site percolation and One could describe a lattice with a basis in computer code
{po=0.6558;a=0.689% for bond percolation. The rest of as an array with an additional dimension, i&RRAY (B,1,J,K),
the lattices all have thresholds which are described byvhereB loops over the basis points. This does not solve all
{pp=1.2868;a=0.616Q for site percolation and the associated problems, however, because a site
{pp=0.7541;a=0.9344 for bond percolation. Indeed, the ARRAY(1,,J,K is not connected in the same way as, e.g.,
results of Eq.(1) for all lattices in Ref[5] are very good. ARRAY(2,1,3,K. An alternative way to characterize the lattice
However, although Galam and Mauger considered manys by making an explicit list of bonds that connect the sites.
lattices, there are quite a few interesting ones which are ndy numbering the sites from 1 td, one can list for each
included in their study. This enables one to test the predictivibond the two sites it connects. Although this is somewhat
power of their formula. In Ref.6] the percolation thresholds elaborate for regular lattices, it has the advantage of main-
of a “stacked triangular” lattice were calculated. As it taining full flexibility, allowing one to handle any desired
turned out, this lattice has the same dimension and coordinaepology. One can divide the calculation in two parts. First
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TABLE I. The description of the dual of the body-centered-cubic lattice as a lattice with a six-point basis.
Each of the points in the first row is connected to the four points listed in its columnthe coordination

number is 4.

1,x 2, X 3, X 4, x 5, x 6, X

3, X 4, x 1, x 2, X 3, X 4, x

6, x+(—1,0,0) 5,x+(0,—1,0) 4,x 3, X 6, X 5, x

4, x+(-1,1-1) 3,x+(0,0,—1) 5, X 6, X 1,x+(1,0,1) 2,x+(1,0,1)

5 x+(-10-1) 6,x+(-1,0-1) 2,x+(0,0,1) 1x+(1-1,1) 2,x+(0,1,0) 1,x+(1,0,0)

one can write a small program that generates lists of bond®rmulas for anisotropic lattices. Therefore these lattices
for a specific lattice. Then one can use a generic program thétave been included in Table II.

calculates the percolation threshold for the specified lattice. Table Il also lists the results for an irregular lattice
This program typically contains separate arrays for the siteg‘Finney” ) and its dual. This lattice is defined on the basis
and for the bonds. The array of bonds would list the sites if a real bead pack, which was constructed and measured by
connects(e.g., BONDS(2NBONDS), while the array of sites  Finney[10]. One can define the beads of the packing as the
would list the bonds that are connected t¢SITESQMAXN-  sjtes of a lattice. The bonds of the network are given once
SITES, with QuAX the maximum coordination numbefTo e defines the neighbors of each site. | have used the De-

determing the.percolation thresh_old for such a system, a CIU?aunay triangulation for this purpose, which is equivalent to,
ter algorithm is needed. For this purpose the cluster algo;

) . - 2-e.g., Bernal's definition of “geometrical neighbord11].
gg:(ranfgﬁ/mHoshen and Kopelma9] can be cast into a suit- The dual of the lattice thus obtained is given by the Voronoi

tessellatiof12]. | have taken subsets of the Finney pack of

For each of the lattices listed in Table 1l | have calculated. . . .
. . . . increasing size, calculated the percolation thresholds for each
percolation thresholdp (L) for various lattice size4. In

two dimensions the largest lattice size was B2 (i.e., S'Zg’ and I'ttﬁd tl?ehresullt)s to E@)]; dt firm th lid
L=512), in three dimensions 6464X64. The results everal checks have been performed to contirm the vald-

guoted in Table Il are fits op. to the scaling relation ity of the computer programs gnd their numerical results.
First of all, a number of percolation thresholds in two dimen-
sions are known exactly. For “self-matching” lattic€$3],
|pe(L)—pg| ~L ™27, (2)  the site percolation threshold 3s Examples are the triangu-
lar lattice and the octagonal latti¢eee Fig. 2. As a conse-
quence the bond percolation threshold of the square lattice
where the critical exponent was kept fixed at 4/3 in two has been shown to betoo. The bond percolation threshold
dimensions and at 0.88 in three dimensions. of the triangular lattice is given by

All the two-dimensional lattices can be “stacked” to p,=2sin(#/18)=0.3472% ..., and for itsdual lattice, the
form three-dimensional lattices. For instance one can stackoneycomb lattice, it is therefore-1p, . Moreover, it was
the layers of square lattices directly on top of one another tghown that the site percolation threshold of the Kagdate
obtain the simple cubic lattice. Analogously one can stackice is equal to the bond percolation threshold of the honey-
the triangular lattice to form what is sometimes called thecomb lattice, i.e., +p, . All these results have been re-
simple hexagonal lattic§8]. By stacking various two- ported by Sykes and Essdr3]. Wierman[14] proved that
dimensional lattices one obtains several anisotropic latticeshe bond percolation threshold of the bowtie lattice is given
A calculation of percolation thresholds for these latticespy p,,=0.4045B... (p,. actually is the root of
should give some information on the validity of universal 1 —p—6p?+6p3—p°=0). The bond percolation
threshold of the dual lattice of the bowtie lattice is-p,,.

I have checked that the numerical results for these thresh-
olds coincided with the exact results, within estimated error
margins of 0.0005 at maximum. Furthermore, the statement
that in two dimensions the bond percolation thresholds of a
lattice and its dual should add to unitjor most lattices
[13]), can be used to test some of the results in Table IlI.

Some of the lattices in Table Il are Bravais lattices, viz.
the simple cubic, the face-centered-cuffizx), the bcc, and
the stacked triangular lattice. | have verified with a separate
computer program, that, when codedamRAY (1,J,K), the re-
sults for the percolation thresholds are the same, within the
estimated error margins. The largest system size used for this

FIG. 1. The definition of the basis points for the dual of the type of calculation was highelL,= 128.
body-centered-cubic lattice. The dashed arrows markeg, and Finally I have checked the results for the dual of the bcc
z indicate the three directions in which this basis is repeated tdattice. This could be done by using the Voronoi tessellation
build the lattice. to generate an explicit dual lattice, based on the positions of
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TABLE II. Site (p. ) and bond p.,) percolation thresholds for various lattices and their dual lattices. The average coordination of the
networks is listed undeg. In the references given in the column titled Ref., pictures of the lattices are given. In the top half of the table the
two-dimensional lattices are listed, in the bottom half the three-dimensional ones. The thresholds markeadneigxacisee text The
lattices marked withy were included in the Galam and Mauger styi8ly7]. The result for the site percolation threshold of the square lattice
is taken from Ref[2]. The abbreviation “hcp” stands for hexagonal close packed. Between brackets are error estimates concerning the last
digit.

Name lattice Ref. Pc.s Pc.b Name dual q Ref. Pe.s Pe.b
! kagorﬁe 4 [3] 0.657% ...* 0.52434) dice 4 0.584®) 0.4755%4)
! square 4 0.592746 05 ! square 4 0.592746 05
5 0.55028) 0.41966) pentagonal 3 [15] 0.64716) 0.58006)
bowtie 5 [14] 0.547%8)  0.40%5...* 33 [14] 0.66536) 0.595...*
! triangular 6 [2] 0.5* 0.3472...% ‘" honeycomb 3 [3] 0.69714) 0.65Z...*
octagonal 6 Fig. 2 05 0.32376) 3 Fig. 2 0.72974) 0.67716)
kagomestack 6 0.334@1) 0.25632) dice stack 6 0.2998) 0.23784)
! (simple cubic 6 0.3114) 0.24872) ! (simple cubic 6 0.31144) 0.24872)
7 0.28724) 0.21424) pentagonal stack % 0.33944) 0.27934)
bowtie stack 7 0.282B) 0.20924) 5% 0.348@4) 0.28534)
triangular stack 8 [8] 0.26232) 0.18592) honeycomb stack 5 0.37( 0.30932)
octagonal stack 8 0.2528) 0.17522) 5 0.38404) 0.31684)
' bee 8 [8] 0.24582) 0.18022) 4 Fig.1  0.45606) 0.40316)
" diamond 4 (8] 0.42864) 0.38882)
/ fee 12 [8] 0.19942) 0.120G2)
" hcp 12 [8] 0.199G2) 0.11992)
Finney pac{10]  14.3 0.1628) 0.09239) 4 0.44959) 0.39878)

a number of bcc lattice sites. Since the coordination numbedifferent: 0.347 28 . .. vs0.3237=0.0006. This means that
of the dual of the bcc lattice is four, the Voronoi tessellationd andq are not enough to predict percolation thresholds. For
is nondegenerate in this case, and therefore easy to use. Algfis case it is not even possible to define an “effective”
in this case several lattice sizes were used and the resulggordination numbeg,, as Galam and Maugé¥] suggest,
were fitted to Eq(2). that will allow such a prediction. Based on the site percola-
tion thresholds one would infer thet is equal for these two
I1l. DISCUSSION lattices. This would lead one to predict that the bond perco-

) lation thresholds are equal too, which is not the case.
There are several observations one can make when one Tpe comparison of the diamond lattice with the dual of

looks carefully at Table Il. For instance, there are many laty, o pcc jattice is worth mentioning. Both lattices haire 3

tices ‘.N'th equal d'm?”S'O” and coordlnatl_on nu_mbgr, butandq=4, and are isotropic. That the dual of the bcc lattice is
with different percolation thresholds. In particular it is inter- isotropic is not apparent from Fig. 1, but follows from the
esting to compare the triangular and octagonal latices, Whlcbact that the bcc lattice itself is isétrc;pic Both the site and
both haved=2 andq=6. Their site percolation threshold is :

. _ _ . bond percolation thresholds are distinctly different for the
equal &, exact result but their bond percolation threshold is two lattices: 0.4286 0.0004 vs 0.456@ 0.0006 (siteg and
0.3888+0.0002 vs 0.403%0.0006(bonds for the diamond

R . and bcc-dual lattice, respectively. So even for isotropic lat-
XA | XA | XK ] X tices one needs more thahand q to predict percolation
ST TN TN TN

v ” v . thresholds.

: I : : In general one can conclude from the table that if a lattice
NG % % @ has a higher coordination numbeyr its percolation thresh-
SO OOTT T XX olds are lower. There is only one exception to this rule: the

! I { : site percolation threshold of thg pentagonal lattice (0.6471)
S %4 %4 N is lower than that of the Kagomiattice (0.657 ...), al-
SOTTONTTOONTT SN though its average coordination number is lowet (8 4).

i [ 1 T This does not contradict the results of Galam and Mauger
N /I\ /|\ /'\ [5], because the Kagonattice is in a different class than all
XA O~ O <X the other two-dimensional lattices. Nevertheless, it is amaz-
- v v v ing in its own right that the ordering of the bond percolation

thresholds is different from that of the site percolation
FIG. 2. The octagonal latticésolid lines and its dual(dashed  thresholds. This occurs in the case of the bcc and the octago-
lines). nal stacked lattice too. However, in this case the lattices have
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equald andq, so it might be considered less striking here . one could try to quantify the anisotropy and add this quantity
The results for the irregular lattices are reasonably welko the fit parameters. The results of Table Il can be used to do
described by Eq(1). The site percolation threshold for the this. For the isotropic lattices one could distinguish between
Finney pack is 0.16280.0008 vs a prediction of 0.1705, |attices with only one coordination number, and lattices with
while the bond percolation threshold is 0.0828.0008 vs a a spreade.g., the octagonal lattice has sites with four con-
prediction of 0.0981. Since the average coordination numbefiected bonds, and sites with eightiowever, these quanti-
of this lattice is 14.3, higher than any of the regular latticesties do not separate the diamond lattice from the dual of the
this is an extra test of Eq1). The results for the dual of the pcc |attice(or even from the dual of the Finney packo one
Finney pack, coordination number 4, lie between those of th¢i|| have to become more sophisticated.
diamond lattice and the dual of the bec lattice. The bond | symmary, | calculated site and bond percolation thresh-
percolation threshold (0.39870.0008) is close to the pre- 45 of many two- and three-dimensional lattices. The results
dicted value (0.3945), but the site percolation thresholdyicate that one cannot predict percolation thresholds on the

shovys a dgviation: 0.44350.0009 vs 0'4267'. . basis of dimension and coordination humber only, not even
Finally, if d andqg are not enough to predict percolation for isotropic lattices

thresholds, are there alternatives? For the anisotropic lattices,
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